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Abstract. We present Monte Carlo and series analysis results for the distribution of 
valences of sites in percolating and non-percolating clusters for the triangular and simple 
cubic site percolation problems in order to explore the importance of dimensionality, at 
fixed lattice coordination number, on the degree of ramification of clusters. 

1. Introduction 

In order to explore the importance of dimensionality on the compactness of clusters in 
site percolation processes, we compare valence data for lattices in two and three 
dimensions with the same coordination number Q. Accordingly, we present series 
analysis and Monte Carlo results for the distribution of valences of sites in percolating 
and non-percolating clusters on the triangular and simple cubic lattices. 

We have previously studied in detail the square lattice site problem (Gaunt et a1 
1980, Whittington eta1 1980) and made a preliminary study of one aspect of the simple 
cubic site problem (Gaunt et a1 1980). We have also investigated bond percolation on 
the square and simple cubic lattices and compared the results with calculations for the 
corresponding Bethe lattices (Whittington et a1 1981). None of this work specifically 
compared lattices with the same coordination number in two and three dimensions, 
though Cherry and Domb (1980) calculated a ‘coefficient of compactness’ for the 
infinite cluster for the triangular and simple cubic site problems. Similar but less 
detailed information oh the distribution of valences of sites has been used by Stanley et 
a1 (1981) in a discussion of the relevance of percolation concepts to the structure of 
liquid water. 

If s is a randomly chosen occupied site on a lattice at occupation density p, and I is 
the set of occupied sites in infinite clusters, we define P ( p ) ,  the percolation probability, 
as 

(1.1) P ( p )  = Prob{s E I}. 

fr = Prob{s E I} (1.2) 

The probability that a site in a finite cluster has valence i is fr, given by 
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where .V, is the set of sites having valence i. Similarly, the probability that a site in an 
infinite cluster has valence i is given by 

11.3, 

We have studied fr and ff using series expansion and Monte Carlo techniques. The 
results are presented in $§ 2 and 3 and discussed in 0 4. 

ff = Prob{s E VIIS E I } .  

2. Non-percolating clusters 

In order to derive high-density series expansions for f we note that (Whittington et a1 
1980) 

fr =E ~ ( n ,  r, i ) p n q f  ~ ( n ,  t, i ) p " q '  
rt .1 I n.1 i 

where C(n,  t, i )  is the number (per lattice site) of sites having valence i in clusters of 17 

sites with perimeter t ,  and q = 1 - p .  We have enumerated C(n,  t, i) for n 13 for the 
triangular lattice and for n s 11 for the simple cubic lattice, As a check on the data we 
expand at low p where P(  p )  = 0 and 

p P c .  (2 .2)  

The coefficients ) of the corresponding high-density expansions 

are given in tables A1 and A2 of the appendix, The additional terms given forf: for the 
triangular lattice have been derived from the series for the percolation probability given 
by Sykes et a1 (1976). The mean valence of sites in finite clusters ( u ( p ) h  is given by 

( u ( p ) ) F  = C if: 12.4) 
8 

which equals Qp for p s p c  (Gaunt et a1 1980) and, at high density, is given by 

(u(q))F= 6q2 + 6q3 +6q4 - 6q5 + 6 q 6  - 102q' 

+ 3129' - 600q9 + 19029'"- 56349 " + . . . (2 .5 )  

for the triangular lattice. For the simple cubic lattice the corresponding series has been 
given by Gaunt et a1 (1980) through 9". At that time we added the caveat that the final 
two terms might contain small errors. In fact we have confirmed the coefficient of 919 
but the value given for the coefficient of q2" does indeed contain a small error. 

As a further check on our data we have calculated the coefficients of a , ( i )  in 

and compared with the values given by Cherry and Domb (19801, who obtained a, ( i )  to 
order r = 14 for the triangular lattice and r = 24 for the simple cubic lattice. Our values 
agree with theirs and, in addition, we have calculated for the triangular lattice three 
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additional terms, which are given in table 1. Our results also confirm the values given by 
Gaunt et a1 (1980) for a z s ( i )  for the simple cubic lattice. 

Table 1. a,( i )  for the triangular lattice. 

r /  i 1 2 3 4 5 6 

15  -534 -375 -308 29 1 -204 -42 
16 1098 948 1244 -642 720 138 
17 -2088 -1692 -3582 1938 - 1998 -450 

We have formed a sequence of Pad6 approximants (Gaunt and Guttmann 1974) to 
the high-density series for f r ( q )  and ( z l ( q ) ) ~  and the results are given in figures 1 , 2  and 
3, together with the exact values for p s p c .  

Figure 1 shows the results for ,fr for the triangular lattice, for which the convergence 
is not very good. For example we expect (Whittington eta1 1980) that fr is a continuous 
function of p although the matching of the high- and low-density branches in figure 1 is 
not convincing. However, we note that discontinuities in fr at p c  would imply that P (  p )  
is discontinuous! The high-density branches for i a 3 are apparently monotonic. There 
is clear evidence of a maximum between p = 0.60 and 0.65 for i = 1. For i = 2 it is not 
possible to distinguish between monotonic behaviour and a shallow maximum at about 
p = 0.55. For i = 0 the behaviour is again monotonic. 

0.3 

0.2 - 
P 

<- 
I 

0.1 

0 

Figure 1. The p dependence of fr, i = 0, 1 ,  2, . . . 6 ,  for the triangular site problem. 



226 D S Gaunt, K MMiddlemiss, G M Torrie and S G Whittington 

The Monte Carlo evidence is in general agreement with these conclusions. There is 
strong evidence of a maximum for i = 1, between p = 0.6 and 0.7 and, in the case of 
i = 2, the evidence for a shallow maximum at about p = 0.55 is stronger than from the 
series results. 

The corresponding results for the simple cubic lattice are shown in figure 2. The 
convergence is much better for this lattice and it is possible to find extrapolants of the 
high-density branches which essentially match the low-density branches at p c .  The 
error bars shown in the diagram represent the spread in the extrapolated values from 
the last few approximants. The qualitative behaviour is the same as for the triangular 
lattice except for i = 2 where the curve is now monotone. The evidence for a maximum 
for i = 1 is again strong. 

Figure 2. The p dependence of f ,  i = 0. 1,2, . . . 6,  for the simple cubic site problem 

For ease of comparison we have plotted the data for (U ( P ) ) ~  for both lattices in figure 
3. The convergence is again better for the simple cubic lattice for which the high- 
density mimic functions essentially match the low-density branch at p c .  The curves are 
qualitatively similar to those found for the square site, square bond and simple cubic 
bond problems (Gaunt et al 1980, Whittington et a1 1981). 

3. Percolating clusters 

The high-density series for ff can be derived from the series for fF and P(q) ,  using the 
relation (Whittington et a1 1980) 

'3 .1 '  
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Figure 3. Comparison of the pdependence of (U( p))pfor the triangular (A) and simple cubic 
(B) site problems. 

Writing 

the coefficients Ci,k are presented in tables A 3  and A4 in the appendix, through orders 
q17 for the triangular lattice and q2' for the simple cubic lattice. All of these coefficients 
are new. The corresponding series for the mean valence of sites in infinite clusters are 

( ~ ( q ) ) I = 6 - 6 q  +6q6-6q7+30q8-42q9+ 120q'o-228q"+504q12- 1O92ql3 

+2562q14-5934q1'+ 14088q16-34164q17+. . . (3.3) 

for the triangular lattice, and 

(u(q))I = 6 - 6q + 6q6 - 6q7 + 3Oq'O - 66q" + 42q12 + 162q13 - 51Oql4+ 606q" 

+288q16-2448q17+4848q18-5940q19+7032q20- 13068q" 

+23844q22-21120q23-34680q24+ 189000q2'+. . . (3.4) 

for the simple cubic lattice. 

ramification of infinite clusters by a parameter k ( q )  given by 
Previously (Whittington et a1 1980, 1981) we have characterised the degree of 

and the first few terms in the series are 

(3.6) 1 5-3 6-11. 7 - 1  8-125 9 + . . .  / .L(q)=f-12q 4q Sq 16q 35q 

for the triangular lattice, and 

(3.7) 1 7  1 1 8  1 7 9  @(q)=1-13q5-aq6-1gq - 1 s q  - 2 z q  +.. .  
for the simple cubic lattice, where we omit higher-order terms since the fractions are 



rmed Pade approximants to all of these series. In Whittington er ul 1981 i 
:d detailed calculations of ff for the Bethe approximation with 0 = 6 and 
:s are in remarkably good agreement with both Monte Carlo and series 
,oth the triangular and simple cubic lattices. The plots for the Bethe and 
,attices are indistinguishable above p = 0.65 while even at p,i = 1, the 
eviation, which occurs for i = 1, is only 0.02. For the simple cubic lattice the 
ndistinguishable from the Bethe approximation for p > 0.45 and, at 
the maximum deviation, again for i = 1, is 0.04. Of course, this implies that 
r the simple cubic and triangular lattices are superimposable for p > 0.65. 
;uch as ( v ( q ) ) ,  and p(q) will also be well approximated by the Bethe results. 
sare the structures of the percolating clusters, at and above the percolation 
n different lattices, we define a reduced density variable 

I and 5 we show the dependence of ( L ' ) ~  and on p.  For comparison we 
ults for the Q = 6 Bethe approximation (Whittington et a1 1981) and the 
c bond problem (Whittington ef a1 1981). 
dts  are in accord with one's qualitative expectations. For p large we expect 

t all occupied sites are members of infinite clusters. This approximation is 
)r p > 0.45 in every case shown in figure 4. The Bethe results are a much 
.oximation to the three-dimensional lattice than to the two-dimensional 
for the simple cubic lattice, the mean valence is lower for the bond problem 
site problem, since site clusters are section graphs of the lattice. In a similar 

wer for the bond problem than for the site problem, as expected, since the 
sh on a vertex set contains all cycles present in any subgraph on this vertex 
:gree of ramification decreases monotonically with increasing p for each 
at fixed p, is less for the site problem than for the bond problem and is less in 
sions than in three, for fixed Q. Even at p c  the infinite cluster on the 
attice is very compact as measured by the value of p ( p  ( p c )  = 0.94) and the 
: in the cluster has more than three neighbours ( ( ~ i ( p ~ ) ) ~  13 .13) .  
ue of p for the square site problem (from (3.9) or Whittington eta1 (1980)) is 
I1 p, than for the triangular site problem so that increasing Q apparently 
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Figure 4. Comparison of the p dependence of (U), for the triangular site (A), simple cubic 
site (B), simple cubic bond (C) and the Q = 6 Bethe approximation (D). 

1.0 

- 
-4 0.5 
I 

0 0.2 0.4 0.6 0.a 
P 

Figure 5. Comparison of the p dependence of the compactness parameter fi  for the 
triangular site (A), simple cubic site (B), simple cubic bond (C) and the Q = 6 Bethe 
approximation (D). 

increases the compactness of the infinite cluster. This result is not unexpected and is 
borne out by calculations in the Bethe approximation. 

The coefficient of compactness A (Cherry and Domb 1980) is related to ( u ) ~  by 

A ={$(U),- l}/{$Q - 1). (3.12) 

Outside the critical region the agreement between our estimates of A and those of 
Domb and Cherry is excellent. At the critical point our estimates of A are 0.28 
(triangular), 0.08 (cubic site), 0.02 (cubic bond) and exactly zero (Bethe approxima- 
tion). Cherry and Domb estimate 0.07 for the cubic site problem, and a value between 
0.3 and 0.35 for the triangular site problem. 
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4. Discussion 

The high-density branches off? are rather difficult to determine accurately because of 
poor convergence of the Pad6 approximants although, if one accepts the arguments for 
continuity, it is possible to get a good idea of the qualitative behaviour, even just above 
pc.  The series for ( v ) ~  are rather better behaved, because of the pre-averaging. 

For the infinite cluster data, the convergence is very good. At fixed p the Bethe 
approximation is excellent. The results essentially coincide for p > p c  + 0.15 and the 
agreement is still surprisingly good even at pc .  However, this comparison, at fixed p ,  
approximates the incipiently percolating cluster(s) on a lattice with infinite clusters in 
the corresponding Bethe approximation at a density well above the critical density. The 
use of the reduced density variable p avoids this problem, since it takes into account the 
differing values of pc .  

The two compactness parameters, A (or equivalently ( u ) ~ )  and p, assign the same 
order to the degree of ramification of the infinite clusters in all cases considered. 

Acknowledgments 

The authors are grateful for financial support to NSERC and NATO. We have 
benefited from helpful discussions with M F Sykes concerning the configurational 
aspects of this problem. 

Appendix 

Coefficients in the high-density expansions of fr and f: for the triangular and simple 
cubic lattices. 

Table Al .  Coefficients bi,k in high-density expansions of f ( q )  for triangular lattice (see 
equation (2.3)). 

~~ ~ 

o I 
1 0 
2 -6 
3 0 
4 9 
5 6 
6 -3 
7 0 
8 -93 
9 98 

10 12 
11 552 
12 -1802 
13 1944 
14 -570 
15 -1938 
16 2499 

h 
-6 

-- 18 
12 
6 

42 
-48 

84 
-672 
1482 

h 
3 

-30 
9 
0 

72 
-42 
-12 

--300 

h 
6 h 

-22 3 
-30 -6 

96 -57  

-128 126 
450 -93 

- 1308 306 

h 1 
-6 0 
24 h 

108 30 
270 45 
576 1S6 
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Table A2. Coefficients bi .k  in high-density expansions of f ( q )  for simple cubic lattice (see 
equation (2.3)). 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1 
0 
0 
0 

-6 
6 
0 

-36 
99 

-122 
-81 
792 

2 658 
417 

-11 992 
32 200 

-40 674 
-19 053 

-2 006 

221 968 

6 
-6 

0 
24 

-78 
108 

6 

1440 
-2 034 

-210 
9 456 

-26 550 
36 414 

5 718 

-516 

-165 450 

12 
-21 

6 
87 

-276 
5 04 

-444 
-612 
3 084 

2 898 
17 652 

-5 802 

-63 690 

8 
-12 
-12 
100 

-204 
228 

96 

2580 
-1084 

-3208 
-936 

12 
-45 

60 
102 

-648 
1713 

2658 
2148 

-2910 

6 
-30 

60 
12 

-408 
1398 

4740 
-3054 

1 
-6 
15 
-8 

-69 
294 

-713 
1220 

Table A3. Coefficients Csk in expansions of f:(q) for triangular lattice (see equation (3.2)). 

k C1.k  c 2 . k  c 3 . k  c 4 . k  c 5 . k  c 6 . k  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

6 
-6 

0 
-6 

6 

30 
-66 
120 

-246 
498 

-1020 
2088 

-18 

15 
-30 

15 
0 
0 

-6 
12 

-36 
78 

324 

1518 

-162 

-702 

-3624 

20 
-60 

60 
-20 

0 
0 

20 
-66 
174 

-394 
894 

-1 986 
4 402 

24 594 
-10 128 

15 
-60 

90 
-60 

15 
0 

15 
-60 
180 

-426 
957 

-2 100 
4 599 

-10 212 
23 745 

-57 174 

6 

60 

30 

6 

96 

552 
-1 218 

2 658 
-5 868 
13 470 

-32 166 
78 786 

-30 

-60 

-6 

-30 

-240 

1 
-6 
15 

-20 
15 
-6 

2 
-6 
21 

-56 
132 

643 

3 177 

18 051 

-294 

-1 410 

-7 456 

-44 670 
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Table A4. Coefficients c , , ~  in expansions ot f f ( q )  for simple cubic lattice (see equation 
(3.2)) 

k 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

h 
-6 

0 
0 
0 

-6 
12 
-6 

-24 
42 

0 
-120 

204 
-24 

-378 
240 

1368 
-4050 

5298 
-1830 
-6216 

15 
-30 

I 5  

0 
0 

15 
3 0 
15 

-12 
111 

-276 
198 
6 24 

-2 316 
3 450 
-795 

-8 1110 
21 036 

-32 586 
45 822 

n 

-19 506 

2i 
-611 
60 
2 0 

I I  
ii 

20 
-60 
60 

--2(l 
120 

-480 
732 
192 

- 3 228 
6 820 

-4 764 
-11 028 

41 016 
-72 584 

97 632 
142 128 
241 744 

c 4  h ___ 

1 5  

hO 
90 
6 0  
I S  

1 )  
15 
60 
90 

-60 
1 0 5  

-450 
915 

-420 
-2 565 
7 608 

- 8  835 
-4 560 
38 928 

126 249 

286 593 

-84 804 

-117 252 

-421 362 

1,i 
- ___ 

h 

31) 
fir I 

6(! 
10 

h 
5 

30 
6 0 
b 0  
66 

222 
T46 

-534 
-858 

4 074 
-6 600 

1746 
17 442 

-49 824 
85 188 

122 484 
186 582 
286 260 
289 896 

i> 

b y  

'0 
l i  

r ,  

! C  

?!I 

48 
128 
1 X(! 
54 

x22 
1 779 
1392 
7 6O9 

11 1911 
22 479 

-34 668 
i l  833 
79 674 
07 803 
18 496 

- 7 ,  - 1  
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